Ethanol melts at -114 degree C. The enthalpy of fusion
is5.02KJ/mol. The specific heat of solid and liquid ethanol are
0.97JK/g-K and 2.31 J/g-K, respectively. How much heat(KJ) is
needed toconvert 25.0 g of solid ethanol at -135 degree C to liquid
ethanolat -50 degree C?

Respuesta :

Answer: The heat required is 6.88 kJ.

Explanation:

The conversions involved in this process are :

[tex](1):ethanol(s)(-135^0C)\rightarrow ethanol(s)(-114^0C)\\\\(2):ethanol(s)(-114^0C)\rightarrow ethanol(l)(-114^0C)\\\\(3):ethanol(l)(-114^0C)\rightarrow ethanol(l)(-50^0C)[/tex]

Now we have to calculate the enthalpy change.

[tex]\Delta H=[m\times c_{p,s}\times (T_{final}-T_{initial})]+n\times \Delta H_{fusion}+[m\times c_{p,l}\times (T_{final}-T_{initial})]+n\times \Delta H_{vap}+[m\times c_{p,g}\times (T_{final}-T_{initial})][/tex]

where,

[tex]\Delta H[/tex] = enthalpy change = ?

m = mass of ethanol = 25.0 g

[tex]c_{p,s}[/tex] = specific heat of solid ethanol= 0.97 J/gK

[tex]c_{p,l}[/tex] = specific heat of liquid ethanol = 2.31 J/gK

n = number of moles of ethanol = [tex]\frac{\text{Mass of ethanol}}{\text{Molar mass of ethanol}}=\frac{25.0g}{46g/mole}=0.543mole[/tex]

[tex]\Delta H_{fusion}[/tex] = enthalpy change for fusion = 5.02 KJ/mole = 5020 J/mole

[tex]T_{final}-T_{initial}=\Delta T[/tex] = change in temperature

The value of change in temperature always same in Kelvin and degree Celsius.

Now put all the given values in the above expression, we get

[tex]\Delta H=[25.0 g\times 0.97J/gK\times (-114-(-135)K]+0.534mole\times 5020J/mole+[25.0g\times 2.31J/gK\times (-50-(-114))K][/tex]

[tex]\Delta H=6885.93J=6.88kJ[/tex]     (1 KJ = 1000 J)

Therefore, the heat required is 6.88 kJ