Verify the identity.

cotangent of x to the second power divided by quantity cosecant of x plus one equals quantity one minus sine of x divided by sine of x

Respuesta :

Answer:

Therefore,

[tex]\dfrac{\cot^{2}x}{\csc x +1}=\dfrac{1-\sin x}{\sin x}[/tex] ....Proved

Step-by-step explanation:

To Prove:

[tex]\dfrac{\cot^{2}x}{\csc x +1}=\dfrac{1-\sin x}{\sin x}[/tex]

Proof:

Left Hand Side = [tex]\dfrac{\cot^{2}x}{\csc x +1}[/tex]

Using Identity [tex]\cot^{2}x=\csc^{2}-1[/tex]

=[tex]\dfrac{\csc^{2}x-1}{\csc x +1}[/tex]

Using identity a² - b² =( a - b )( a + b )

=[tex]\dfrac{(\csc x-1)(\csc x+1)}{\csc x +1}[/tex]

=[tex](\csc x-1)[/tex]

Now Using identity [tex]\csc x=\dfrac{1}{\sin x}[/tex] we get

=[tex](\dfrac{1}{\sin x}-1)[/tex]

=[tex](\dfrac{1-\sin x}{\sin x})[/tex]

=Right Hand Side

Therefore,

[tex]\dfrac{\cot^{2}x}{\csc x +1}=\dfrac{1-\sin x}{\sin x}[/tex] ....Proved