1. Rewrite the following equations in the form (x−a)^2+(y−????)^2=????^2.
a. x^2+4x+4+y^2−6x+9=36
b. x^2−10x+25+y^2+14y+49=4

Respuesta :

Answer:

(a) [tex](x+2)^2+(y-3)^2=6^2[/tex]

(b) [tex](x-5)^2+(y+7)^2=2^2[/tex]

Step-by-step explanation:

The standard form of circle is

[tex](x-a)^2+(y-b)^2=r^2[/tex]

where, (a,b) is center and r is radius.

Properties of algebra:

[tex](a+b)^2=a^2+2ab+b^2[/tex]

[tex](a-b)^2=a^2-2ab+b^2[/tex]

(a)

Consider the given equation is

[tex]x^2+4x+4+y^2-6y+9=36[/tex]

[tex](x^2+4x+4)+(y^2-6y+9)=36[/tex]

[tex](x^2+2x(2)+2^2)+(y^2-2y(3)+3^3)=6^2[/tex]

Using properties of algebra, we get

[tex](x+2)^2+(y-3)^2=6^2[/tex]

(b)

Consider the given equation is

[tex]x^2-10x+25+y^2+14y+49=4[/tex]

[tex](x^2-10x+25)+(y^2+14y+49)=4[/tex]

[tex](x^2-2x(5)+5^2)+(y^2+2y(7)+7^2)=2^2[/tex]

Using properties of algebra, we get

[tex](x-5)^2+(y+7)^2=2^2[/tex]