Answer:
Part A:
Margin of error=M≅0.1131
Part B:
Margin of error=M≅0.1404
Part C:
Margin of error=M≅0.1131
Step-by-step explanation:
The formula for finding the margin of error for the proportion is:
Margin of error=M=[tex]2*\sqrt{\frac{p(1-p)}{n} }[/tex]
where:
p is the sample proportion =[tex]\frac{Number of Chips}{Samlpe Size}[/tex]
n is the sample size
Part A:
Margin of error=M=[tex]2*\sqrt{\frac{p(1-p)}{n} }[/tex]
p=[tex]\frac{10}{50}[/tex]
p=0.2
Margin of error=M=[tex]2*\sqrt{\frac{0.2*(1-0.2)}{50}}[/tex]
Margin of error=M≅0.1131
Part B:
p=[tex]\frac{28}{50}[/tex]
p=0.56
Margin of error=M=[tex]2*\sqrt{\frac{0.56*(1-0.56)}{50}}[/tex]
Margin of error=M≅0.1404
Part C:
p=[tex]\frac{40}{50}[/tex]
p=0.8
Margin of error=M=[tex]2*\sqrt{\frac{0.8*(1-0.8)}{50}}[/tex]
Margin of error=M≅0.1131