Answer: The equivalent mass of the acid is 83.16 grams
Explanation:
To calculate the number of moles for given molarity, we use the equation:
[tex]\text{Moles of solute}={\text{Molarity of the solution}}\times{\text{Volume of solution (in L)}}[/tex]
Molarity of [tex]NaOH[/tex] solution = 0.1165 M
Volume of [tex]NaOH[/tex] solution = 24.68 mL = 0.02468 L
Putting values in equation 1, we get:
[tex]\text{Moles of} NaOH={0.1165M}\times{0.02468L}=2.875\times 10^{-3}moles=2.875\times 10^{-3}geq[/tex]
( as acidity of NaOH is 1)
For end point: gram equivalents of acid = gram equivalents of base = [tex]2.875\times 10^{-3}[/tex]
Mass of acid=[tex]gram equivalents\times {\text {Equivalent mass}}[/tex]
[tex]0.2391=2.875\times 10^{-3}\times {\text {Equivalent mass}}[/tex]
[tex]{\text {Equivalent mass}}=83.16g[/tex]
Thus equivalent mass of the acid is 83.16 grams