Respuesta :

Answer: The equivalent mass of the acid is 83.16 grams

Explanation:

To calculate the number of moles for given molarity, we use the equation:

[tex]\text{Moles of solute}={\text{Molarity of the solution}}\times{\text{Volume of solution (in L)}}[/tex]  

Molarity of [tex]NaOH[/tex] solution = 0.1165 M

Volume of [tex]NaOH[/tex] solution = 24.68 mL = 0.02468 L

Putting values in equation 1, we get:

[tex]\text{Moles of} NaOH={0.1165M}\times{0.02468L}=2.875\times 10^{-3}moles=2.875\times 10^{-3}geq[/tex]    

( as acidity of NaOH is 1)

For end point:  gram equivalents of acid =  gram equivalents of base = [tex]2.875\times 10^{-3}[/tex]

Mass of acid=[tex]gram equivalents\times {\text {Equivalent mass}}[/tex]

[tex]0.2391=2.875\times 10^{-3}\times {\text {Equivalent mass}}[/tex]

[tex]{\text {Equivalent mass}}=83.16g[/tex]

Thus equivalent mass of the acid is 83.16 grams