A gas mixture with 4 mol of Ar, x moles of Ne, and y moles
ofXe is prepared at a pressure of 1 bar and a temperature of
298K.The total number of moles in the mixture is three times thatof
Ar.Write an expression for the deltaGmixing in termsof
x. At what value of x does the magnitude ofdeltaGmixing
have its maximum value? CalculatedeltaGmixing for this
value of x.

Respuesta :

Answer:

a) [tex]\Delta G_{mixing}=\frac{R*T}{12}*[4*ln (1/3) +x*ln (x/12) +(8-x)*ln ((8-x)/12)][/tex]

b) [tex]x=4[/tex]

c) [tex]\Delta G_{max}=-2721.9 J/mol[/tex]

Explanation:

Gas mixture:

[tex]n_{Ar}= 4 mol[/tex]

[tex]n_{Ne}= x mol[/tex]

[tex]n_{Xe}= y mol[/tex]

[tex]n_{tot}= n_{Ar} + n_{Ne} + n_{Xe}=3*n_{Ar}[/tex]

[tex] n_{Ne} + n_{Xe}=2*n_{Ar}[/tex]

[tex] x + y=8 mol[/tex]

[tex]y=8 mol- x[/tex]

Mol fractions:

[tex]x_{Ar}=\frac{4 mol}{12 mol}=1/3[/tex]

[tex]x_{Ne}=\frac{x mol}{12 mol}=x/12[/tex]

[tex]x_{Xe}=\frac{8 - x mol}{12 mol}=(8-x)/12[/tex]

Expression of [tex]\Delta G_{mixing}[/tex]

[tex]\Delta G_{mixing}=R*T*\sum_{i]*x_i*ln (x_i)[/tex]

[tex]\Delta G_{mixing}=R*T*[1/3*ln (1/3) +x/12*ln (x/12) +(8-x)/12*ln ((8-x)/12)][/tex]

[tex]\Delta G_{mixing}=\frac{R*T}{12}*[4*ln (1/3) +x*ln (x/12) +(8-x)*ln ((8-x)/12)][/tex]

Expression of [tex]\Delta G_{max}[/tex]

[tex]\frac{d \Delta G_{mixing}}{dx}=0[/tex]

[tex]\frac{d \Delta G_{mixing}}{dx}=\frac{R*T}{12}*[ln (x/12)+12-ln ((8-x)/12)-12][/tex]

[tex]0=\frac{R*T}{12}*[ln (x/12)-ln ((8-x)/12)[/tex]

[tex]0=[ln (x/12)-ln ((8-x)/12)[/tex]

[tex]ln (x/12)=ln ((8-x)/12)[/tex]

[tex]x=(8-x)[/tex]

[tex]x=4[/tex]

[tex]\Delta G_{max}=\frac{8.314*298}{12}*[4*ln (1/3) +4*ln (4/12) +(8-4)*ln ((8-4)/12)][/tex]

[tex]\Delta G_{max}=\frac{8.314*298}{12}*[4*ln (1/3) +4*ln (1/3) +(4)*ln (1/3)][/tex]

[tex]\Delta G_{max}=\frac{8.314*298}{12}*[12*ln (1/3)][/tex]

[tex]\Delta G_{max}=-2721.9 J/mol[/tex]