Answer: The mass of ice is [tex]2.39\times 10^{22}g[/tex]
Explanation:
We are given:
Area of Antarctica = [tex]5,500,000mi^2=5,500,000\times 2.59\times 10^{10}=142.45\times 10^{15}cm^2[/tex] (Conversion factor: [tex]1mi^2=2.59\times 10^{10}cm^2[/tex] )
Height of Antarctica with ice = 7500 ft.
Height of Antarctica without ice = 1500 ft.
Height of ice = 7500 - 1500 = 6000 ft = [tex]182.88\times 10^3cm[/tex] (Conversion factor: 1 ft = 30.48 cm)
To calculate mass of ice, we use the equation:
[tex]\text{Density of a substance}=\frac{\text{Mass of a substance}}{\text{Volume of a substance}}[/tex]
We are given:
Density of ice = [tex]0.917g/cm^3[/tex]
Volume of ice = Area × Height of ice = [tex]142.45\times 10^{15}cm^2\times 182.88\times 10^3cm=26051.26\times 10^{18}cm^3[/tex]
Putting values in above equation, we get:
[tex]0.917g/cm^3=\frac{\text{Mass of ice}}{26051.26\times 10^{18}cm^3}\\\\\text{Mass of ice}=(0.917g/cm^3\times 26051.26\times 10^{18}cm^3=2.39\times 10^{22}g[/tex]
Hence, the mass of ice is [tex]2.39\times 10^{22}g[/tex]