Respuesta :

Answer:

Part 22) The area is [tex]A=15a^3b^6\ units^2([/tex] and the perimeter is [tex]P=10a^2b^4+6ab^2\ unit[/tex]

Part 24) The area is [tex]A=16m^3n\ units^2[/tex] and the perimeter is [tex]P=24mn\ units[/tex]    

Part 26) The area is equal to [tex]A=9\pi x^6y^{2}\ units^2[/tex]

Step-by-step explanation:

Part 22) Find the perimeter and area

step 1

The area of a rectangle is equal to

[tex]A=LW[/tex]

we have

[tex]L=5(a^2)(b^4)\ units[/tex]

[tex]W=3(a)(b^2)\ units[/tex]

Remember that

When multiply exponents with the same base, adds the exponents and maintain the base

substitute in the formula

[tex]A=(5(a^2)(b^4))(3(a)(b^2))[/tex]

[tex]A=15a^3b^6\ units^2[/tex]

step 2

The perimeter of a rectangle is equal to

[tex]P=2(L+W)[/tex]

we have

[tex]L=5(a^2)(b^4)\ units[/tex]

[tex]W=3(a)(b^2)\ units[/tex]  

substitute in the formula

[tex]P=2(5(a^2)(b^4)+3(a)(b^2))[/tex]

[tex]P=10a^2b^4+6ab^2\ unit[/tex]

Part 24) Find the perimeter and area

step 1

The area of triangle is equal to

[tex]A=\frac{1}{2}bh[/tex]

where

[tex]b=8mn\ units[/tex]

[tex]h=4m^2\ units[/tex]

Remember that

When multiply exponents with the same base, adds the exponents and maintain the base

substitute the given values

[tex]A=\frac{1}{2}(8mn)(4m^2)[/tex]

[tex]A=16m^3n\ units^2[/tex]

step 2

Find the perimeter

I will assume that is an equilateral triangle (has three equal length sides)

The perimeter of an equilateral triangle is

[tex]P=3b[/tex]

where

[tex]b=8mn\ units[/tex]

substitute

[tex]P=3(8mn)[/tex]

[tex]P=24mn\ units[/tex]

Part 26) Find the area

The area of a circle is equal to

[tex]A=\pi r^{2}[/tex]

where

[tex]r=3x^3y\ units[/tex]

Remember the property

[tex](a^{m})^{n}=a^{m*n}[/tex]

substitute in the formula the given value

[tex]A=\pi (3x^3y)^{2}[/tex]

[tex]A=9\pi x^6y^{2}\ units^2[/tex]

Answer:

Step-by-step explanation: