Respuesta :

Answer:

[tex]7\ units[/tex]

Step-by-step explanation:

we have

a(-2,4), b(4,3), c(4,-5), d(-2,-2)

step 1

Plot the vertices to better understand the problem

using a graphing tool

The graph in the attached figure

step 2

Find the mid-segment parallel to ad and bc

Note : The mid-segment is parallel to the parallel bases of trapezoid

Let

e ---> midpoint segment ab

f ---> midpoint segment cd

The formula to calculate the midpoint between two points is equal to

[tex](\frac{x1+x2}{2},\frac{y1+y2}{2})[/tex]

Find the midpoint e

we have

a(-2,4) and b(4,3)

substitute the given values

[tex]e\ (\frac{-2+4}{2},\frac{4+3}{2})[/tex]

[tex]e\ (1,3.5)[/tex]

Find the midpoint f

we have

c(4,-5), d(-2,-2)

substitute the given values

[tex]f\ (\frac{4-2}{2},\frac{-5-2}{2})[/tex]

[tex]f\ (1,-3.5)[/tex]

step 3

Find the length of the mid-segment ef

we have

[tex]e\ (1,3.5)[/tex]

[tex]f\ (1,-3.5)[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

substitute

[tex]d_e_f=\sqrt{(-3.5-3.5)^{2}+(1-1)^{2}}[/tex]

[tex]d_e_f=\sqrt{(-7)^{2}+(0)^{2}}[/tex]

[tex]d_e_f=\sqrt{49}\ units[/tex]

[tex]d_e_f=7\ units[/tex]

Ver imagen calculista