Use your understanding of the symmetry of the sine and cosine functions to determine the value of tan(−theta) for all
real-numbered values of theta. Determine whether the tangent function is even, odd, or neither.

Respuesta :

Answer:

[tex]tan(-\theta)=-tan\theta[/tex]

Odd function

Step-by-step explanation:

We are given that

[tex]tan(-\theta)[/tex]

We have to determine the value of [tex]tan(-\theta)[/tex]and find tangent function is odd,even or neither.

[tex]tan(-\theta)=\frac{sin(-\theta)}{cos(-\theta)}[/tex]

[tex]tan\theta=\frac{sin\theta}{cos\theta}[/tex]

We know that

[tex]sin(-\theta)=-sin\theta[/tex]

[tex]cos(-\theta)=cos\theta[/tex]

By using  identities

Then, we get

[tex]tan(-\theta)=\frac{-sin\theta}{cos\theta}=-tan\theta[/tex]

[tex]tan(-\theta)=-tan\theta[/tex]

Odd function: If [tex]f(-x)=-f(x)[/tex]

Even function:If [tex]f(-x)=f(x)[/tex]

[tex]tan(-\theta)=-tan\theta[/tex]

Therefore, function is an odd function.