Answer:
A.(-2, 0)
C. (-1.4)
Step-by-step explanation:
we know that
If a point lie on the line, then the point must satisfy the equation of the line (makes the equation true)
we have
[tex]8x-2y+7=-9[/tex]
subtract 7 both sides
[tex]8x-2y=-9-7[/tex]
[tex]8x-2y=-16[/tex]
divide by 2 both sides
[tex]4x-y=-8[/tex]
Substitute the value of x and the value of y of each point in the linear equation and analyze the result
Verify each point
case A) we have
(-2, 0)
For x=-2, y=0
substitute
[tex]4(-2)-(0)=-8[/tex]
[tex]-8=-8[/tex] ---> is true
so
the point lie on the line
case B) we have
(1, 3)
For x=1, y=3
substitute
[tex]4(1)-(3)=-8[/tex]
[tex]1=-8[/tex] ---> is not true
so
the point not lie on the line
case C) we have
(-1, 4)
For x=-1, y=4
substitute
[tex]4(-1)-(4)=-8[/tex]
[tex]-8=-8[/tex] ---> is true
so
the point lie on the line
case D) we have
(1, -4)
For x=1, y=-4
substitute
[tex]4(1)-(-4)=-8[/tex]
[tex]8=-8[/tex] ---> is not true
so
the point not lie on the line
case E) we have
(0, -1)
For x=0, y=-1
substitute
[tex]4(0)-(-1)=-8[/tex]
[tex]1=-8[/tex] ---> is not true
so
the point not lie on the line