Respuesta :

Answer:

The required answer is [tex]c=7\sqrt{3}[/tex]

Therefore the number in green box should be 7.

Step-by-step explanation:

Given:

AB = 7√2

AD = a , BD = b , DC = c , AC = d

∠B = 45°, ∠C = 30°

To Find:

c = ?

Solution:

In Right Angle Triangle ABD Sine identity we have

[tex]\sin B = \dfrac{\textrm{side opposite to angle B}}{Hypotenuse}\\[/tex]

Substituting the values we get

[tex]\sin 45 = \dfrac{AD}{AB}= \dfrac{a}{7\sqrt{2}}[/tex]

[tex] \dfrac{1}{\sqrt{2}}= \dfrac{a}{7\sqrt{2}}\\\\\therefore a=7[/tex]

Now in Triangle ADC Tangent identity we have

[tex]\tan C = \dfrac{\textrm{side opposite to angle C}}{\textrm{side adjacent to angle C}}[/tex]

Substituting the values we get

[tex]\tan 30 = \dfrac{AD}{DC}= \dfrac{a}{c}\\\\\dfrac{1}{\sqrt{3}}=\dfrac{7}{c}\\\\\therefore c=7\sqrt{3}[/tex]

The required answer is [tex]c=7\sqrt{3}[/tex]

Ver imagen inchu420