An airplane is flying from city A to city B at a bearing of 100 degrees. The distance between the two cities is 1200 miles. How far west is city A relative to city B ? Round your answer to the nearest mile.

Respuesta :

Answer:

Step-by-step explanation:

[tex]sin~100=\frac{h}{1200}\\h=1200*sin*100 \approx 1181.7\\\approx ~1182~mile[/tex]

Answer:

[tex]\displaystyle 1182\:mi.[/tex]

Step-by-step explanation:

[tex]\displaystyle \frac{OPPOCITE}{HYPOTENUSE} = sin\:\theta \\ \frac{ADJACENT}{HYPOTENUSE} = cos\:\theta \\ \frac{OPPOCITE}{ADJACENT} = tan\:\theta \\ \frac{HYPOTENUSE}{ADJACENT} = sec\:\theta \\ \frac{HYPOTENUSE}{OPPOCITE} = csc\:\theta \\ \frac{ADJACENT}{OPPOCITE} = cot\:\theta[/tex]

You are travelling from one location to another at a directional angle of 100°. So, we will use the cosecant trigonometric ratio to determine how far west the aeroplane travelled to its destination:

[tex]\displaystyle \frac{1200}{w} = csc\:100 \\ \frac{1200}{csc\:100} = w \\ \\ 1181,7693036... = w \\ \\ \boxed{1182 \approx w}[/tex]

I am joyous to assist you at any time.