Answer: 3y - x = 14
Step-by-step explanation:
Since two points are given , we will use the formula for finding equation of line in two point form, which is given as:
[tex]\frac{y-y_{1}}{x - x_{1}}[/tex] = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
[tex]x_{1}[/tex] = 1
[tex]x_{2}[/tex] = -2
[tex]y_{1}[/tex] = 5
[tex]y_{2}[/tex] = 4
Substituting into the formula, we have :
[tex]\frac{y - 5}{x - 1}[/tex] = [tex]\frac{4 - 5}{-2 -1 }[/tex]
[tex]\frac{y - 5}{x - 1}[/tex] = [tex]\frac{-1}{-3}[/tex]
[tex]\frac{y - 5}{x - 1}[/tex] = [tex]\frac{1}{3}[/tex]
cross multiplying , we have
3( y - 5 ) = x - 1
3y - 15 = x - 1
Add 15 to both sides
3y = x - 1 + 15
3y = x + 14
Writing the equation of the line in standard form , we have
3y - x = 14