Answer:
Therefore the distance between the points (-4, 2) and (1.-3) on the coordinate is
[tex]l(AB) =5\sqrt{2}\ unit[/tex]
Step-by-step explanation:
Given:
Let,
point A( x₁ , y₁) ≡ ( -4 , 2)
point B( x₂ , y₂ )≡ (1 , -3)
To Find:
[tex]l(AB)=?[/tex]
Solution:
We have Distance Formula between two point is given as
[tex]l(AB) = \sqrt{((x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} )}[/tex]
Substituting the given values we get
[tex]l(AB) = \sqrt{((1--4)^{2}+(-3-2)^{2} )}[/tex]
[tex]l(AB) = \sqrt{((1+4)^{2}+(-5)^{2} )}[/tex]
[tex]l(AB) = \sqrt{(25+25 )}=\sqrt{50}=5\sqrt{2}\ unit[/tex]
Therefore the distance between the points (-4, 2) and (1.-3) on the coordinate is
[tex]l(AB) =5\sqrt{2}\ unit[/tex]