Please help! :)
A sector of a circle has a central angle measuring 15 degrees and the radius of the circle measures 9 inches. What is the arc length of the sector? Express the answer in terms of Pi.

Please help A sector of a circle has a central angle measuring 15 degrees and the radius of the circle measures 9 inches What is the arc length of the sector Ex class=

Respuesta :

Answer:

Second option is correct

[tex]Arc\ length = \frac{3}{4} \pi\ in[/tex]

Step-by-step explanation:

Given:

Central angle = 15°

Radius of the circle = 9 in

Arc length = ?

Given formula is

[tex]\frac{Arc\ length}{Circumfrance} = \frac{n}{360}[/tex]

Where n is the central angle of the sector.

Write the given formula for Arc length of the sector.

[tex]Arc\ length = Circumfrance\times \frac{n}{360}[/tex]

We know that the the circumference of the circle is [tex]2\pi r[/tex], where r is the radius of the circle,

[tex]Arc\ length = 2\pi r\times \frac{n}{360}[/tex]

Now we substitute central angle value and radius value in above equation.

[tex]Arc\ length = 2\pi 9\times \frac{15}{360}[/tex]

[tex]Arc\ length = 18\times \pi \frac{15}{360}[/tex]

[tex]Arc\ length = \frac{18\times 15}{360} \pi[/tex]               ----------([tex]\frac{18}{360}=\frac{1}{20}[/tex])

[tex]Arc\ length = \frac{15}{20} \pi[/tex]

Divide the numerator and denominator by 5.

[tex]Arc\ length = \frac{3}{4} \pi\ in[/tex]

Therefore the arc length of the sector is [tex]\frac{3}{4} \pi\ in[/tex]

Answer:

the answer is b/ the second option

Step-by-step explanation:

Otras preguntas