Respuesta :

Answer:

x = 1

Step-by-step explanation:

We have to solve the given logarithmic equation of variable x.

The equation is [tex]3\log _{2} (2x) = 3[/tex]

⇒ [tex]\log_{2} (2x)^{3} = 3[/tex]  

{Since, we know the logarithmic property, [tex]a \log b = \log b^{a}[/tex]}

⇒ [tex]\log_{2} (2x)^{3} = 3\log_{2}2 = \log_{2} 2^{3}[/tex]

{Since we know that [tex]\log_{a} a = 1[/tex]}

Now cancelling log from both sides we get,  

[tex](2x)^{3} = 2^{3}[/tex]

⇒ [tex]x^{3} = 1[/tex]

x = 1 (Answer)

Answer:

It's B on Edg

Step-by-step explanation:

I just took the test