Respuesta :
Answer:
x = 1
Step-by-step explanation:
We have to solve the given logarithmic equation of variable x.
The equation is [tex]3\log _{2} (2x) = 3[/tex]
⇒ [tex]\log_{2} (2x)^{3} = 3[/tex]
{Since, we know the logarithmic property, [tex]a \log b = \log b^{a}[/tex]}
⇒ [tex]\log_{2} (2x)^{3} = 3\log_{2}2 = \log_{2} 2^{3}[/tex]
{Since we know that [tex]\log_{a} a = 1[/tex]}
Now cancelling log from both sides we get,
[tex](2x)^{3} = 2^{3}[/tex]
⇒ [tex]x^{3} = 1[/tex]
⇒ x = 1 (Answer)
Answer:
It's B on Edg
Step-by-step explanation:
I just took the test