Answer: 11 m
Step-by-step explanation:
We can solve this with the trigonometric function sine if we imagine there is a right triangle formed, where the hypotenuse is the length of the kite string and the triangle's opposite side is the height [tex]H[/tex] of the kite above ground.
Then:
[tex]cos(45\°)=\frac{opposite-side}{hypotenuse}=\frac{H}{16 m}[/tex]
Isolating [tex]H[/tex]:
[tex]H=cos(45\°) (16 m)[/tex]
Finally:
[tex]H=11.31 m \approx 11 m[/tex]