Respuesta :

Answer:

[tex]tan(\theta)=\sqrt{35}[/tex]

Step-by-step explanation:

we know that

The angle [tex]\theta[/tex] lies in Quadrant III

so

The value of cosine is negative

The value of sine is negative

The value of tangent is positive

we have

[tex]cos(\theta)=-\frac{1}{6}[/tex]

step 1

Find the value of [tex]sin(\theta)[/tex]

Applying trigonometric identity

[tex]sin^2(\theta)+cos^2(\theta)=1[/tex]

substitute the given value

[tex]sin^2(\theta)+(-\frac{1}{6})^2=1[/tex]

[tex]sin^2(\theta)+\frac{1}{36}=1[/tex]

[tex]sin^2(\theta)=1-\frac{1}{36}[/tex]

[tex]sin^2(\theta)=\frac{35}{36}[/tex]

square root both sides

[tex]sin(\theta)=\pm\frac{\sqrt{35}}{6}[/tex]

Remember that the sine is negative (Quadrant III)

so

[tex]sin(\theta)=-\frac{\sqrt{35}}{6}[/tex]

step 2

Find the value of [tex]tan(\theta)[/tex]

we know that

[tex]tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]

we have

[tex]sin(\theta)=-\frac{\sqrt{35}}{6}[/tex]

[tex]cos(\theta)=-\frac{1}{6}[/tex]

substitute

[tex]tan(\theta)=-\frac{\sqrt{35}}{6}:-\frac{1}{6}=\sqrt{35}[/tex]