Suppose we have the polynomial p(x)=(x-2)(x+1-2i)(x+1+2i). Which of the following are true? (there are 3)

p(-1+2i)=0
p(1-2i)=0
p(2i)=0
p(-1-2i)=0
p(1+2i)=0
p(2)=0

Respuesta :

p(-1+2i)=0

p(-1-2i)=0

p(2)=0

Step-by-step explanation:

Given polynomial is:

[tex]p(x) = (x-2)(x+1-2i)(x+1+2i)[/tex]

we have to find all the values on given values to find the correct options

[tex]p(-1+2i) = (-1+2i-2)(-1+2i+1-2i)(-1+2i+1+2i)\\=(-3+2i)(0)(4i)\\=0[/tex]

[tex]p(1-2i) = (1-2i-2)(1-2i+1-2i)(1-2i+1+2i)\\=(-1-2i)(-4i)(2)\\=(-1-2i)(-8i)\\= -8i-16i^2\\= -8i-16(-1)\\=-8i+16[/tex]

[tex]p(2i) = (2i-2)(2i+1-2i)(2i+1+2i)\\=(2i-2)(1)(4i+1)[/tex]

[tex]p(-1-2i) = (-1-2i-2)(-1-2i+1-2i)(-1-2i+1+2i)\\=(-3-2i)(-4i)(0)\\=0[/tex]

[tex]p(1+2i) = (1+2i-2)(1+2i+1-2i)(1+2i+1+2i)\\=(-1+2i)(2)(2+4i)[/tex]

[tex]p(2) = (2-2)(2+1-2i)(2+1+2i)\\=(0)(3-2i)(3+2i)\\=0[/tex]

Hence,

The true statements are:

p(-1+2i)=0

p(-1-2i)=0

p(2)=0

Keywords: Polynomials, expressions

Learn more about polynomials at:

  • brainly.com/question/7490805
  • brainly.com/question/7294502

#LearnwithBrainly