Respuesta :

Answer:

Part 1) [tex]sin(\theta)=\frac{2}{3}[/tex]

Par 2) [tex]cos(\theta)=-\frac{\sqrt{5}}{3}[/tex]

Part 3) [tex]tan(\theta)=-\frac{2\sqrt{5}}{5}[/tex]

Step-by-step explanation:

step 1

Find the [tex]sin(\theta)[/tex]

we have

[tex]csc(\theta)=\frac{3}{2}[/tex]

Remember that

[tex]csc(\theta)=\frac{1}{sin(\theta)}[/tex]

therefore

[tex]sin(\theta)=\frac{2}{3}[/tex]

step 2

Find the [tex]cos(\theta)[/tex]

we know that

[tex]sin^{2}(\theta) +cos^{2}(\theta)=1[/tex]

we have

[tex]sin(\theta)=\frac{2}{3}[/tex]

substitute

[tex](\frac{2}{3})^{2} +cos^{2}(\theta)=1[/tex]

[tex]\frac{4}{9} +cos^{2}(\theta)=1[/tex]

[tex]cos^{2}(\theta)=1-\frac{4}{9}[/tex]

[tex]cos^{2}(\theta)=\frac{5}{9}[/tex]

square root both sides

[tex]cos(\theta)=\pm\frac{\sqrt{5}}{3}[/tex]

we have that

[tex]cos(\theta) < 0[/tex] ---> given problem

so

[tex]cos(\theta)=-\frac{\sqrt{5}}{3}[/tex]

step 3

Find the [tex]tan(\theta)[/tex]

we know that

[tex]tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]

we have

[tex]sin(\theta)=\frac{2}{3}[/tex]

[tex]cos(\theta)=-\frac{\sqrt{5}}{3}[/tex]

substitute

[tex]tan(\theta)=\frac{2}{3}:-\frac{\sqrt{5}}{3}=-\frac{2}{\sqrt{5}}[/tex]

Simplify

[tex]tan(\theta)=-\frac{2\sqrt{5}}{5}[/tex]