Respuesta :

Answer:

Part 1) [tex]sin(\theta)=-\frac{\sqrt{65}}{9}[/tex]

Part 2) [tex]tan(\theta)=\frac{\sqrt{65}}{4}[/tex]

Step-by-step explanation:

we have that

The cosine of angle theta is negative and the tangent of angle theta is positive

That means that the sine of angle theta is negative

step 1

Find [tex]sin(\theta)[/tex]

we know that

[tex]sin^{2}(\theta) +cos^{2}(\theta)=1[/tex]

we have

[tex]cos(\theta)=-\frac{4}{9}[/tex]

substitute

[tex]sin^{2}(\theta) +(-\frac{4}{9})^{2}=1[/tex]

[tex]sin^{2}(\theta) +\frac{16}{81}=1[/tex]

[tex]sin^{2}(\theta)=1-\frac{16}{81}[/tex]

[tex]sin^{2}(\theta)=\frac{65}{81}[/tex]

square root both sides

[tex]sin(\theta)=\pm\frac{\sqrt{65}}{9}[/tex]

Remember that

In this problem the sine of angle theta is negative

so

[tex]sin(\theta)=-\frac{\sqrt{65}}{9}[/tex]

step 2

Find [tex]tan(\theta)[/tex]

we know that

[tex]tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]

we have

[tex]sin(\theta)=-\frac{\sqrt{65}}{9}[/tex]

[tex]cos(\theta)=-\frac{4}{9}[/tex]

substitute the given values

[tex]tan(\theta)=-\frac{\sqrt{65}}{9}:-\frac{4}{9}=\frac{\sqrt{65}}{4}[/tex]