Respuesta :

Answer:

Part 1) [tex]sin(\theta)=-\frac{\sqrt{23}}{5}[/tex]

Part 2) [tex]tan(\theta)=\frac{\sqrt{46}}{2}[/tex]

Step-by-step explanation:

step 1

Find the [tex]sin(\theta)[/tex]

we know that

[tex]sin^{2}(\theta) +cos^{2}(\theta)=1[/tex]

we have

[tex]cos(\theta)=-\frac{\sqrt{2}}{5}[/tex]

substitute

[tex]sin^{2}(\theta) +(-\frac{\sqrt{2}}{5})^{2}=1[/tex]

[tex]sin^{2}(\theta) +\frac{2}{25}=1[/tex]

[tex]sin^{2}(\theta)=1-\frac{2}{25}[/tex]

[tex]sin^{2}(\theta)=\frac{23}{25}[/tex]

square root both sides

[tex]sin(\theta)=\pm\frac{\sqrt{23}}{5}[/tex]

Remember that the angle θ terminates in Quadrant III

That means, that the value of sin(θ) is negative

so  

[tex]sin(\theta)=-\frac{\sqrt{23}}{5}[/tex]

step 2

Find the [tex]tan(\theta)[/tex]

we know that

[tex]tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]

we have

[tex]sin(\theta)=-\frac{\sqrt{23}}{5}[/tex]

[tex]cos(\theta)=-\frac{\sqrt{2}}{5}[/tex]

substitute

[tex]tan(\theta)=-\frac{\sqrt{23}}{5}:-\frac{\sqrt{2}}{5}=\frac{\sqrt{23}}{\sqrt{2}}[/tex]

simplify

[tex]tan(\theta)=\frac{\sqrt{46}}{2}[/tex]