Answer:
By 3 units is the interquartile range for Orlando's data set greater than the interquartile range for Victor's data set.
Step-by-step explanation:
Given:
Victor's Data Set: {22, 29, 32, 27, 30}.
Orlando's Data Set: {36, 25, 33, 27, 35}.
Now, to find the units is the interquartile range for Orlando's data set greater than the interquartile range for Victor's data set.
So, we get the interquartile range of Victor's Data Set:
{22,27,29,30,32}
Q3 = [tex]\frac{30+32}{2}[/tex]
Q3 = [tex]\frac{62}{2} =31.[/tex]
Q1 = [tex]\frac{22+27}{2}[/tex]
Q1 = [tex]\frac{49}{2}=24.5[/tex]
Thus, interquartile range is:
Interquartile range = [tex]Q3-Q1[/tex]
Interquartile range = [tex]31-24.5=6.5[/tex]
The interquartile range of Victor's Data Set = 6.5.
Now, to get the interquartile range of Orlando's Data Set:
{25,27,33,35,36}
Q1 = [tex]\frac{25+27}{2}=\frac{52}{2} =26.[/tex]
Q3 = [tex]\frac{35+36}{2} =\frac{71}{2}=35.5.[/tex]
Thus, interquartile range is:
Interquartile range = [tex]Q3-Q1[/tex]
Interquartile range = [tex]35.5-26=9.5[/tex]
The interquartile range of Orlando's Data set = 9.5.
Now, to get the units of the interquartile range for Orlando's data set greater than the interquartile range for Victor's data set we subtract Victor's interquartile range from Orlando's interquartile range:
[tex]The\ interquartile\ range\ of\ Orlando's\ Data\ Set\ -\ The\ interquartile\ range\ of\ Victor's\ Data\ Set[/tex]
[tex]=9.5-6.5=3.[/tex]
Therefore, by 3 units is the interquartile range for Orlando's data set greater than the interquartile range for Victor's data set.