By how many units is the interquartile range for Orlando's data set greater than the interquartile range for Victor's data set? Victor's Data Set: {22, 29, 32, 27, 30} Orlando's Data Set: {36, 25, 33, 27, 35}

Respuesta :

Answer:

By 3 units is the interquartile range for Orlando's data set greater than the interquartile range for Victor's data set.

Step-by-step explanation:

Given:

Victor's Data Set: {22, 29, 32, 27, 30}.

Orlando's Data Set: {36, 25, 33, 27, 35}.

Now, to find the units is the interquartile range for Orlando's data set greater than the interquartile range for Victor's data set.

So, we get the interquartile range of Victor's Data Set:

{22,27,29,30,32}

Q3 = [tex]\frac{30+32}{2}[/tex]

Q3 = [tex]\frac{62}{2} =31.[/tex]

Q1 = [tex]\frac{22+27}{2}[/tex]

Q1 = [tex]\frac{49}{2}=24.5[/tex]

Thus, interquartile range is:

Interquartile range = [tex]Q3-Q1[/tex]

Interquartile range = [tex]31-24.5=6.5[/tex]

The interquartile range of Victor's Data Set = 6.5.

Now, to get the interquartile range of Orlando's Data Set:

{25,27,33,35,36}

Q1 = [tex]\frac{25+27}{2}=\frac{52}{2} =26.[/tex]

Q3 = [tex]\frac{35+36}{2} =\frac{71}{2}=35.5.[/tex]

Thus, interquartile range is:

Interquartile range = [tex]Q3-Q1[/tex]

Interquartile range = [tex]35.5-26=9.5[/tex]

The interquartile range of Orlando's Data set = 9.5.

Now, to get the units of the interquartile range for Orlando's data set greater than the interquartile range for Victor's data set we subtract Victor's interquartile range from Orlando's interquartile range:

[tex]The\ interquartile\ range\ of\ Orlando's\ Data\ Set\ -\ The\ interquartile\ range\ of\ Victor's\ Data\ Set[/tex]

[tex]=9.5-6.5=3.[/tex]

Therefore, by 3 units is the interquartile range for Orlando's data set greater than the interquartile range for Victor's data set.