Respuesta :

Answer:

[tex]-1(12w-6)[/tex]

Step-by-step explanation:

we have

[tex](12w+6)[/tex]

Verify each expression

case 1) [tex]-1(12w-6)[/tex]

Apply distributive property

Remember that

[tex](-1)(-1)=1[/tex]

[tex](-1)(1)=-1[/tex]

[tex]-1(12w)-1(-6)[/tex]

[tex]-12w+6[/tex]

compare with the given expression

[tex]-12w+6 \neq (12w+6)[/tex] ----> are not equivalent

case 2) [tex]2(3+6w)[/tex]

Apply distributive property

[tex]2(3)+2(6w)[/tex]

[tex]6+12w[/tex]

compare with the given expression

[tex]6+12w=(12w+6)[/tex] ---> are equivalent

case 3) [tex]6(1+2w)[/tex]

Apply distributive property

[tex]6(1)+6(2w)[/tex]

[tex]6+12w[/tex]

compare with the given expression

[tex]6+12w=(12w+6)[/tex] ---> are equivalent

case 4) [tex]-1(-12w-6)[/tex]

Apply distributive property

Remember that

[tex](-1)(-1)=1[/tex]

[tex](-1)(1)=-1[/tex]

[tex]-1(-12w)-(1)(-6)[/tex]

[tex]12w+6[/tex]

compare with the given expression

[tex]12w+6=(12w+6)[/tex] ---> are equivalent

Answer:

-1(-12w - 6)

Step-by-step explanation: