Respuesta :
Answer: The partial pressure of individual components in the container will be same, that is [tex]p_{SO_2}=p_{CH_4}=p_{H_2}[/tex]
Explanation:
To calculate the total pressure, we use the equation given by ideal gas equation:
[tex]PV=nRT[/tex]
where,
P = pressure of the gas
V = Volume of gas = 10.0 L
n = Number of moles = [tex](n_{CH_4}+n_{H_2}+n_{SO_2})=(0.5+0.5+0.5)=1.5mol[/tex]
R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]
T = temperature of the gas = [tex]25^oC=[25+273]K=298K[/tex]
Putting values in above equation, we get:
[tex]P\times 10L=1.5\times 0.0821\text{ L atm }mol^{-1}K^{-1}\times 298K\\\\P=\frac{1.5\times 0.0821\times 298}{10}=3.67atm[/tex]
The partial pressure of a gas is given by Raoult's law, which is:
[tex]p_A=p_T\times \chi_A[/tex] ......(1)
where,
[tex]p_A[/tex] = partial pressure of substance A
[tex]p_T[/tex] = total pressure
[tex]\chi_A[/tex] = mole fraction of substance A
To calculate the mole fraction of a substance, we use the equation:
[tex]\chi_A=\frac{n_{A}}{n_{A}+n_B}[/tex] .......(2)
We are given:
Moles of methane = 0.5 moles
Moles of hydrogen = 0.5 moles
Moles of sulfur dioxide = 0.5 moles
- For methane:
Using equation 2, we get:
[tex]\chi_{CH_4}=\frac{n_{CH_4}}{n_{CH_4}+n_{H_2}+n_{SO_2}}=\frac{0.5}{1.5}=\frac{1}{3}[/tex]
Using equation 1, we get:
[tex]p_{CH_4}=3.67\times \frac{1}{3}=1.22atm[/tex]
Partial pressure of methane = 1.22 atm
- For hydrogen gas:
Using equation 2, we get:
[tex]\chi_{H_2}=\frac{n_{H_2}}{n_{CH_4}+n_{H_2}+n_{SO_2}}=\frac{0.5}{1.5}=\frac{1}{3}[/tex]
Using equation 1, we get:
[tex]p_{H_2}=3.67\times \frac{1}{3}=1.22atm[/tex]
Partial pressure of hydrogen gas = 1.22 atm
- For sulfur dioxide:
Using equation 2, we get:
[tex]\chi_{SO_2}=\frac{n_{SO_2}}{n_{CH_4}+n_{H_2}+n_{SO_2}}=\frac{0.5}{1.5}=\frac{1}{3}[/tex]
Using equation 1, we get:
[tex]p_{SO_2}=3.67\times \frac{1}{3}=1.22atm[/tex]
Partial pressure of sulfur dioxide = 1.22 atm
Hence, the partial pressure of individual components in the container will be same, that is [tex]p_{SO_2}=p_{CH_4}=p_{H_2}[/tex]