Respuesta :
Answer:
6.21 rad/s
1.3041 m/s, 0.567 m/s²
[tex]106.4778\ ^{\circ}[/tex]
Explanation:
[tex]\omega_f[/tex] = Final angular velocity
[tex]\omega_i[/tex] = Initial angular velocity = 0
[tex]\alpha[/tex] = Angular acceleration = 2.3 rad/s²
[tex]\theta[/tex] = Angle of rotation
t = Time taken = 2.3 s
Equation of rotational motion
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \omega_f=0+2.7\times 2.3\\\Rightarrow \omega_f=6.21\ rad/s[/tex]
The angular speed is 6.21 rad/s
Linear velocity is given by
[tex]v=r\omega\\\Rightarrow v=0.21\times 6.21\\\Rightarrow v=1.3041\ m/s[/tex]
Linear velocity is 1.3041 m/s
Tangential acceleration is given by
[tex]a_t=r\alpha\\\Rightarrow a_t=0.21\times 2.7\\\Rightarrow a_t=0.567\ m/s^2[/tex]
Tangential acceleration is 0.567 m/s²
[tex]\theta=\omega_it+\dfrac{1}{2}\alpha t^2\\\Rightarrow \theta=0\times t+\dfrac{1}{2}\times 2.7\times 2.3^2\\\Rightarrow \theta=7.1415\ rad[/tex]
In degress the angle would be
[tex]57.3+7.1415\times \dfrac{180}{\pi}=466.47780\ ^{\circ}[/tex]
From x axis it would be
[tex]466.47780-360=106.4778\ ^{\circ}[/tex]
The angle is [tex]106.4778\ ^{\circ}[/tex] from x axis