the area of a circular oil slick on the surface of the sea is increasing at a rate of [150m^2/s] how fast is the radius changing when:

a) the radius is 25 m

b) the area is [1000 m^2]

Respuesta :

Answer with Step-by-step explanation:

We are given that

[tex]\frac{dA}{dt}=150m^2/s[/tex]

a.Radius =25 m

We have to find rate of change of radius.

We know that

Area of circle,[tex]A=\pi r^2[/tex]

Differentiate w.r.t time

[tex]\frac{dA}{dt}=2\pi r\frac{dr}{dt}[/tex]

Substitute the values then we get

[tex]150=2\pi (25)\frac{dr}{dt}[/tex]

[tex]\frac{dr}{dt}=\frac{150}{50\pi}=\frac{3}{\pi} m/s[/tex]

[tex]\frac{dr}{dt}=\frac{3}{\pi} m/s[/tex]

b.A=[tex]1000m^2[/tex]

Substitute the values then we get

[tex]1000=\pi r^2[/tex]

[tex]\pi=3.14[/tex]

[tex]r^2=\frac{1000}{3.14}[/tex]

[tex]r=\sqrt{\frac{1000}{3.14}}=17.8m[/tex]

[tex]\frac{dA}{dr}=2\pi r\frac{dr}{dt}[/tex]

Substitute the values then we get

[tex]150=2\pi(17.8)\frac{dr}{dt}[/tex]

[tex]\frac{dr}{dt}=\frac{150}{2\pi(17.8)}=\frac{150}{35.6\pi}[/tex]m/s

[tex]\frac{dr}{dt}=\frac{75}{17.8\pi}[/tex]m/s