Respuesta :

Answer:

The positive value of k is 3.

Step-by-step explanation:

The given function is

[tex]y=\cos (kt)[/tex]

Differentiate with respect to t.

[tex]\dfrac{dy}{dt}=\dfrac{d}{dt}\cos (kt)[/tex]

[tex]\dfrac{dy}{dt}=-k\sin (kt)[/tex]

Differentiate with respect to t.

[tex]\dfrac{d^2y}{dt^2}=\dfrac{d}{dt}(-k\sin (kt))[/tex]

[tex]\dfrac{d^2y}{dt^2}=-k\dfrac{d}{dt}(\sin (kt))[/tex]

[tex]\dfrac{d^2y}{dt^2}=-k(k\cos (kt))[/tex]

[tex]\dfrac{d^2y}{dt^2}=-k^2y[/tex]       [tex][\because y=\cos (kt)][/tex]

[tex]\dfrac{d^2y}{dt^2}+k^2y=0[/tex]            .... (1)

It is given that

[tex]\dfrac{d^2y}{dt^2}+9y=0[/tex]           .... (2)

On comparing (1) and (2) we get

[tex]k^2=9[/tex]

[tex]k=\pm\sqrt{9}[/tex]

[tex]k=\pm 3[/tex]

Therefore, the positive value of k is 3.