Answers:
A) [tex]-\frac{11}{4}[/tex]
C) [tex]m_{1}=\frac{Fr^{2}}{G m_{2}}[/tex]
Step-by-step explanation:
Part 1:
We have the followig equation:
[tex]\frac{x-1}{3}-\frac{x+4}{5}=\frac{4x-1}{8}[/tex]
Calculating the least common multiple (l.c.m) in the denominator in the left side of the equation, being l.c.m=15:
[tex]\frac{5(x-1)-3(x+4)}{15}=\frac{4x-1}{8}[/tex]
Solving for the left part of the equation:
[tex]\frac{2x-17}{15}=\frac{4x-1}{8}[/tex]
Operating with cross product:
[tex]8(2x-17)=15(4x-1)[/tex]
Applying the distributive property:
[tex]16x-136=60x-15[/tex]
Isolating [tex]x[/tex]:
[tex]x=-\frac{121}{44}[/tex]
Dividing numerator and denominator by 11:
[tex]x=-\frac{11}{4}[/tex] Hence, the correct option is A
Part 2:
We have the followig equation:
[tex]F=\frac{G m_{1} m_{2}}{r^{2}}[/tex]
Operating with cross product:
[tex]Fr^{2}=G m_{1} m_{2}[/tex]
Isolating [tex]m_{1}[/tex]:
[tex]m_{1}=\frac{Fr^{2}}{G m_{2}}[/tex] Hence, the correct option is C