Answer:
(a) [tex]\ln (x^{\frac{1}{8}}y)[/tex]
(b) [tex]\ln (\dfrac{(x+7)^2}{x^9})[/tex]
Step-by-step explanation:
The given expression is
[tex]\frac{1}{8}\ln x+\ln y[/tex]
Using the properties of logarithm we get
[tex]\ln (x^{\frac{1}{8}})+\ln y[/tex] [tex][\because \ln a^b=b\ln a][/tex]
[tex]\ln (x^{\frac{1}{8}}y)[/tex] [tex][\because \ln(ab)=\ln a+\ln b][/tex]
Therefore, the simplified form of given expression is [tex]\ln (x^{\frac{1}{8}}y)[/tex].
The given expression is
[tex]2\ln (x+7)-9\ln x[/tex]
Using the properties of logarithm we get
[tex]\ln (x+7)^2-\ln x^9[/tex] [tex][\because \ln a^b=b\ln a][/tex]
[tex]\ln (\dfrac{(x+7)^2}{x^9})[/tex] [tex][\because \ln(\frac{a}{b})=\ln a-\ln b][/tex]
Therefore, the simplified form of given expression is [tex]\ln (\dfrac{(x+7)^2}{x^9})[/tex].