Answer:
a)[tex]v=-T\dfrac{F_0}{m}(e^{-\dfrac{t}{T}} -1)[/tex]
b)[tex]v=T\dfrac{F_0}{m}[/tex]
Explanation:
Given that
[tex]F_x=F_0e^{-\dfrac{t}{T}}[/tex]
We know that force F given as
F= m a
a=Acceleration
m=mass
[tex]F=m\dfrac{dv}{dt}[/tex]
[tex]F_0e^{-\dfrac{t}{T}}=m\dfrac{dv}{dt}[/tex]
[tex]\dfrac{dv}{dt}=\dfrac{F_0}{m}e^{-\dfrac{t}{T}}[/tex]
[tex]dv=\dfrac{F_0}{m}e^{-\dfrac{t}{T}}dt[/tex]
By applying boundary conditions
[tex]\int_{0}^{v} dv=\int_{0}^{t}\dfrac{F_0}{m}e^{-\dfrac{t}{T}}dt[/tex]
[tex]v=-T\left [\dfrac{F_0}{m}e^{-\dfrac{t}{T}} \right ]_0^{t}\\v=-T\dfrac{F_0}{m}(e^{-\dfrac{t}{T}} -1)[/tex]
The expression of velocity will be
[tex]v=-T\dfrac{F_0}{m}(e^{-\dfrac{t}{T}} -1)[/tex]
When the time become so long
[tex]e^{-\dfrac{t}{T}}=e^{-\dfrac{\infty }{T}}=0[/tex]
Therefore the velocity
[tex]v=-T\dfrac{F_0}{m}(0 -1)[/tex]
[tex]v=T\dfrac{F_0}{m}[/tex]