In hydrogen, the transition from level 2 to level 1 has a rest wavelength of 121.6 nm.

(A) Find the speed and direction for a star in which this line appears at wavelength 120.6 nm.
(B) Find the speed and direction for a star in which this line appears at wavelength 121.4 nm.
(C) Find the speed and direction for a star in which this line appears at wavelength 122.2 nm.
(D) Find the speed direction for a star in which this line appears at wavelength 123.0 nm.

Respuesta :

Answer:

A. v = 2,480 10⁶ m / s , The start  away  us

B.    v = 4.96 105 m / s, The Star moves away

C.    v = -1.48 10⁶ m / s , The star is approaching

D.   v = -3.43 10⁶ m / s, The star is approaching

Explanation:

This variation in the wavelength of the light emitted by the Star is explained by the relativistic Doppler effect.

         f’ = √[(1+ v / c) / (1-v / c)]  f

The speed of light is

        c = λ f

        f = c / λ

We replace

       c / λ’= √ [(1+ v / c) / (1-v / c)]  c /λ

Let's clear the speed, calling

       β = v / c

       1 / λ'² = [(1+ β) / (1 -β)] 1 /λ²

       (1 -β) = (1+ β) λ'² / λ²

       β (λ'² / λ² +1) = 1 - λ'² /λ²

       β = [(1-λ'² /λ²) / (1 + λ'² / λ²)]

       v / c = [(1 -λ'² /λ²) / (1 + λ'² / λ²)]

       v = c  [(1 -λ'² /λ²) / (1 + λ'² / λ²)]

Now we can solve case house

To make the calculation easier, let's call      a= λ'/ λ  

           v = c [(1- a²) / (1 + a²)]

A)  λ  = 121.6 nm

     λ’= 120.6 nm

   Let's replace

     a² = (120.6 / 121.6)²

     a² = 0.9836

    v = c [(1- 0.9836) / (1 + 0.9836)]

    v = 3 10⁸ 8.2678 10⁻³

    v = 2,480 10⁶ m / s

The start  away  us

B)  λ‘= 121.4 nm

    a² = (121.4 / 121.6)²

    a² = 0.9967

   v = c [(1- 0.9967) / (1 + 0.9967)]

   v = 3 10⁸ 1.6527 10⁻³

   v = 4.96 105 m / s

The Star moves away

C)   λ’= 122.2 nm

     a² = (122.2 /121.6)²

     a² = 1.00989

     v = c [(1- 1.00989) / (1 + 1.00989)]

     v = 3 10⁸ (- 4.9207 10⁻³)

     v = -1.48 10⁶ m / s

The star is approaching

D)   λ’= 123.0 nm

     a² = (123.0 / 121.6)²

     a² = 1.02316

    v = c [(1- 1.02316) / (1+ 1.02316)]

    v = 3 10⁸ (-1.1447 10⁻²)

    v = -3.43 10⁶ m / s

The star is approaching