Let omega be a complex number such that omega^3 = 1. Find all possible values of {1}{1 + \omega} + {1}{1 + \omega^2}. Enter all the possible values, separated by commas.

Respuesta :

Answer:

1 is Answer.

Step-by-step explanation

[tex]\frac{1}{1+omega^{2} } + \frac{1}{1+omega }\\[/tex]

= [tex]\frac{(-1)*(omega + 1)}{omega^{2}  }[/tex]

As we know that ω²+ω+1=0

Thus putting in above equation, we get

= [tex]\frac{1}{(-1)*omega } + \frac{1}{(-1)*omega^{2}  }[/tex]

Rearranging and simplifying:

= [tex]\frac{-1}{omega } + \frac{-1}{omega^{2}  }[/tex]

= [tex]\frac{(-1)*(omega + 1)}{omega^{2}  }[/tex]

= [tex]\frac{(-1)*(- omega^{2} )}{omega^{2}  }[/tex]

= 1 Answer