Find the zeros of the function y=x^2-4x-16 by completing the square. Express your answer in simple redical form. Graph the parabola using a standar window to see the irrational zeroes.

Respuesta :

Answer:

The zeros of the function are

[tex]x=2+2\sqrt{5}[/tex]

[tex]x=2-2\sqrt{5}[/tex]

The graph in the attached figure

Step-by-step explanation:

we have

[tex]y=x^{2}-4x-16[/tex]

This is a vertical parabola open upward (the leading coefficient is positive)

The vertex is a minimum

Remember that

The zeros of the function are the values of x when the value of y is equal to zero

For y=0

[tex]x^{2}-4x-16=0[/tex]

Move the constant term to the right side

[tex]x^{2}-4x=16[/tex]

Complete the square

[tex]x^{2}-4x+2^2=16+2^2[/tex]

[tex]x^{2}-4x+4=20[/tex]

Rewrite as perfect squares

[tex](x-2)^{2}=20[/tex] ---> the vertex is the point (2,-20)

take square root both sides

[tex]x-2=\pm\sqrt{20}[/tex]

[tex]x=2\pm\sqrt{20}[/tex]

Simplify

[tex]x=2\pm2\sqrt{5}[/tex]

The zeros of the function are

[tex]x=2+2\sqrt{5}[/tex]

[tex]x=2-2\sqrt{5}[/tex]

using a graphing tool

The graph in the attached figure

Ver imagen calculista