Respuesta :

Answer:

[tex]h(x)=-2x+4[/tex]

[tex]g(x)=\sqrt[3]{x}-5[/tex]

Step-by-step explanation:

Consider the given function is

[tex]f(x)=\sqrt[3]{-2x+4}-5[/tex]

It is given that [tex]f(x)=g(h(x))[/tex] and neither g(x) nor h(x) is solely x.

[tex]f(x)=\sqrt[3]{(-2x+4)}-5[/tex]

Let [tex]h(x)=-2x+4[/tex], then we get

[tex]f(x)=g(h(x))=\sqrt[3]{h(x)}-5[/tex]

Substitute h(x)=x in the above function.

[tex]g(x)=\sqrt[3]{x}-5[/tex]

Therefore, the required functions are [tex]h(x)=-2x+4[/tex] and [tex]g(x)=\sqrt[3]{x}-5[/tex].

Check the solutions.

[tex]g(h(x))=g(-2x+4)[/tex]             [tex][\because h(x)=-2x+4][/tex]

[tex]g(h(x))=\sqrt[3]{-2x+4}-5[/tex]            [tex][\because g(x)=\sqrt[3]{x}-5][/tex]

[tex]g(h(x))=f(x)[/tex]

Therefore, our solution is correct.