contestada

What equation is graphed in this figure? y+2=−32(x−2) y−3=32(x+1) y+1=−23(x−3) y−4=−23(x+2) Number graph that ranges from negative five to five on the x and y axes. A line passes through begin ordered point zero comma one end ordered pair and begin ordered pair two comma negative two end ordered pair

Respuesta :

Answer:

[tex]y+2=-\frac{3}{2}(x-2)[/tex]

Step-by-step explanation:

Given:

Two points on a line are given as:

(0, 1)  and (2, -2)

We know that the slope of a line passing through points [tex](x_1,y_1)\ and\ (x_2,y_2)[/tex] is given as:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Plug in [tex]x_1=0,y_1=1,x_2=2,y_2=-2[/tex]. This gives,

[tex]m=\frac{-2-1}{2-0}\\\\m=\frac{-3}{2}=-\frac{3}{2}[/tex]

The equation of a line with slope 'm' and points [tex](x_1,y_1)\ and\ (x_2,y_2)[/tex] is given as:

[tex]y-y_1=m(x-x_1)\\\\or\\\\y-y_2=m(x-x_2)[/tex]

Now, on plugging in the second point [tex](x_2,y_2)=(2,-2)[/tex] we get:

[tex]y-(-2)=-\frac{3}{2}(x-2)\\\\y+2=-\frac{3}{2}(x-2)[/tex]

Therefore, the first option is correct which is given as:

[tex]y+2=-\frac{3}{2}(x-2)[/tex]

The equation that passes through the given orderd pairs is required.

The correct option is [tex]y+2=-\dfrac{3}{2}(x-2)[/tex]

The ordered pairs are

[tex](0,1),(2,-2)[/tex]

Let us substitute in each equation

[tex](0,1)[/tex]

[tex]y+2=-\dfrac{3}{2}(x-2)\\\Rightarrow 1+2=-\dfrac{3}{2}(0-2)\\\Rightarrow 3=3[/tex]

[tex](2,-2)[/tex]

[tex]-2+2=-\dfrac{3}{2}(2-2)\\\Rightarrow 0=0[/tex]

So, equation [tex]y+2=-\dfrac{3}{2}(x-2)[/tex] will pass through the given points.

[tex](0,1)[/tex]

[tex]y-3=\dfrac{3}{2}(x+1)\\\Rightarrow 1-3=\dfrac{3}{2}(1+1)\\\Rightarrow -2\neq3[/tex]

[tex](0,1)[/tex]

[tex]y+1=-\dfrac{2}{3}(x-3)\\\Rightarrow 1+1=-\dfrac{2}{3}(1-3)\\\Rightarrow 2\neq \dfrac{4}{3}[/tex]

[tex](0,1)[/tex]

[tex]y-4=-\dfrac{2}{3}(x+2)\\\Rightarrow 1-4=-\dfrac{2}{3}(0+2)\\\Rightarrow -3\neq -\dfrac{4}{3}[/tex]

Learn more:

https://brainly.com/question/11670876?referrer=searchResults