An m2 = 1.2 kg can of soup is thrown upward with a velocity of v2 = 6.8 m/s. It is immediately struck from the side by an m1 = 0.37 kg rock traveling at v1 = 8.6 m/s. The rock ricochets off at an angle of α = 61◦ with a velocity of v3 = 5 m/s. What is the angle of the can’s motion after the collision? Answer in units of ◦ .

Respuesta :

Answer:

Explanation:

Given

mass of can [tex]m_2=1.2\ kg[/tex]

mass of rock [tex]m_1=0.37\ kg[/tex]

upward of can [tex]v_2=6.8\ m/s[/tex]

velocity of rock [tex]v_1=8.6\ m/s(Horizontal)[/tex]

ricochets off angle [tex]\alpha =61^{\circ}[/tex]

Velocity of rock after collision [tex]v_3=5\ m/s[/tex]

Let velocity of can after collision is [tex]v_4[/tex]

suppose can makes an angle of [tex]\theta [/tex] with horizontal

as External motion is absent therefore we can conserve momentum

Conserving momentum in x direction

[tex]m_1v_1+0=m_1v_3\cos \alpha +m_2v_2\cos \theta[/tex]

[tex]0.37\times 8.6+0=0.37\times 5\times \cos (61)+1.2\times v_4\times \cos \theta [/tex]

[tex]v_4\cos \theta =1.904 -------1[/tex]

Conserving momentum in Y direction

[tex]0+m_2v_2=m_1v_3\sin \alpha +m_ 2v_4\sin \theta [/tex]

[tex]1.2\times 6.8=1.2\times 5\times \sin (61)+1.2\times v_4\sin \theta [/tex]

[tex]v_4\sin \theta =2.426 --------2[/tex]

squaring and adding 1 and 2 we get

[tex]v_4^2=9.511[/tex]

[tex]v_4=3.084\ m/s[/tex]

For angle [tex]\theta [/tex] divide 1 and 2

[tex]\tan \theta =\frac{2.426}{1.904}[/tex]

[tex]\tan \theta =1.274[/tex]

[tex]\theta =\tan ^{-1}(1.274)[/tex]

[tex]\theta =51.87^{\circ}[/tex]