Respuesta :

Answer:

A) [tex](x+2)(x+2)=0\\[/tex]

B) [tex]x=-2\ or\ x=-2[/tex]

C) { -2 , -2 }

Step-by-step explanation:

Given:

[tex]11x^{2}+44x+44=0[/tex]

To Find:

A) Factor the Trinomial.

B) use the zero product property

C) ordered pairs.

Solution:

A) Factor the Trinomial.

Dividing the given equation throughout by 11 we get

[tex]\dfrac{11x^{2}}{11}+\dfrac{44x}{11}+\dfrac{44}{11}=\dfrac{0}{11}[/tex]

[tex]x^{2}+4x+4=0[/tex]

For factorizing remove the factor 4 such that on addition you will get 4

i.e 2 × 2 = 4 and 2 + 2 = 4

Now by splitting the middle term we get

[tex]x^{2}+2x+2x+4=0\\x(x+2)+2(x+2)=0\\(x+2)(x+2)=0\\[/tex]

B) Using the zero product property and set each factor equal to 0 we get

[tex](x+2)(x+2)=0\\(x+2)=0\ or\ (x+2)=0\\x=-2\ or\ x=-2[/tex]

C) The solution written in the ordered pairs is

{ -2 , -2 }