Helppp pleaseee anyone!

Answer:
A) [tex](x+2)(x+2)=0\\[/tex]
B) [tex]x=-2\ or\ x=-2[/tex]
C) { -2 , -2 }
Step-by-step explanation:
Given:
[tex]11x^{2}+44x+44=0[/tex]
To Find:
A) Factor the Trinomial.
B) use the zero product property
C) ordered pairs.
Solution:
A) Factor the Trinomial.
Dividing the given equation throughout by 11 we get
[tex]\dfrac{11x^{2}}{11}+\dfrac{44x}{11}+\dfrac{44}{11}=\dfrac{0}{11}[/tex]
[tex]x^{2}+4x+4=0[/tex]
For factorizing remove the factor 4 such that on addition you will get 4
i.e 2 × 2 = 4 and 2 + 2 = 4
Now by splitting the middle term we get
[tex]x^{2}+2x+2x+4=0\\x(x+2)+2(x+2)=0\\(x+2)(x+2)=0\\[/tex]
B) Using the zero product property and set each factor equal to 0 we get
[tex](x+2)(x+2)=0\\(x+2)=0\ or\ (x+2)=0\\x=-2\ or\ x=-2[/tex]
C) The solution written in the ordered pairs is
{ -2 , -2 }