Respuesta :

Step-by-step explanation:

Given: [tex]y = cos(sin^{-1}x))[/tex]

As the domain for the inverse sine function is 1  ≤  x  ≤  1  as this is the range for the sine function.

The range for the function is the same as the range for the cosine function, 1  ≤  y  ≤  1

As

[tex]sin^{2}x +cos^{2}x = 1[/tex]

So, using the identity [tex]cos(x) = \pm \sqrt{1-sin^{2}(x) }[/tex]

[tex]y = \pm \sqrt{1-sin^{2}(sin^{-1}(x)) }[/tex]

As the sin and inverse sin function do cancel each other, so only x² is left.

Hence,

[tex]y = \pm \sqrt{1-x^{2}[/tex] ; [tex]-1\leq x\leq 1[/tex]

Keywords: trigonometric function

Learn more trigonometric function from brainly.com/question/12551115

#learnwithBrainly