A solution prepared by dissolving 0.100 mole of propionic acid in enough water to make 1.00 L of solution is observed to have a pH = 2.94. What is the Ka for propionic acid?(A) 1.3 x 10¯6(B) 1.1 x 10¯3(C) 1.3 x 10¯5(D) 1.1 x 10¯2

Respuesta :

Answer:

C) [tex]k_a=1.3\times 10^{-5}[/tex]

Explanation:

pH is defined as the negative logarithm of the concentration of hydrogen ions.

Thus,  

pH = - log [H⁺]

The expression of the pH of the calculation of weak acid is:-

[tex]pH=-log(\sqrt{k_a\times C})[/tex]

Where, C is the concentration = 0.5 M

Given, pH = 2.94

Moles = 0.100 moles

Volume = 1.00 L

So, [tex]Molarity=\frac{Moles}{Volume}=\frac{0.100}{1.00}\ M=0.100\ M[/tex]

C = 0.100 M

[tex]2.94=-log(\sqrt{k_a\times 0.100})[/tex]

[tex]\log _{10}\left(\sqrt{k_a0.1}\right)=-2.94[/tex]

[tex]\sqrt{0.1}\sqrt{k_a}=\frac{1}{10^{2.94}}[/tex]

[tex]k_a=1.3\times 10^{-5}[/tex]

The Ka for propionic acid will be "[tex]1.3\times 10^{-5}[/tex]".

Given:

Moles,

  • 0.1 mol

Volume in liters,

  • 1 L

pH,

  • 2.94

We know that,

Concentration of propionic acid will be:

→ [tex]C= \frac{moles}{Volume \ in \ liters}[/tex]

By substituting the values, we get

       [tex]= \frac{0.1}{1}[/tex]

       [tex]= 0.1 \ M[/tex]

Now,

→ [tex]pH = -log[H+][/tex]

For weak acids,

→ [tex][H+] = (Ka.C)^{\frac{1}{2} }[/tex]

→ [tex]pH = -log(Ka.C)^{\frac{1}{2} }[/tex]

 [tex](Ka.C)^{\frac{1}{2} } = 10^{-pH}[/tex]

          [tex]Ka = \frac{(10^{-pH})^2}{C}[/tex]

                 [tex]= \frac{(10^{-2.94})^2}{0.1}[/tex]

                 [tex]= 1.3\times 10^{-5}[/tex]

Thus the approach above is right.

Learn more:

https://brainly.com/question/1195517