Answer: a. There's a 96% chance that the given interval includes the true value of the population parameter.
Step-by-step explanation:
The interpretation for the [tex](1-\alpha)\%[/tex] confidence interval , (where [tex]\alpha[/tex] = Significance level ) is that :
A person can be [tex](1-\alpha)\%[/tex] confidence that the true population parameter lies in [tex](1-\alpha)\%[/tex] confidence interval .
i.e. the chances of confidence interval has true population parameter = [tex](1-\alpha)\%[/tex]
Similarly , the interpretation of a 96% confidence level would be :
A person can be 96% confidence that the true population parameter lies in 96% confidence interval .
i.e. There's a 96% chance that the given interval includes the true value of the population parameter.
Therefore , the correct answer is a. There's a 96% chance that the given interval includes the true value of the population parameter.