Answer:
The change of the momentum of the ball is [tex]-19.8\, \frac{mkg}{s}[/tex]
Explanation:
We should find [tex]\varDelta\overrightarrow{p}=\overrightarrow{p_{f}}-\overrightarrow{p_{i}} [/tex] (1)with [tex]\overrightarrow{p_{i}} [/tex] the initial momentum and [tex]\overrightarrow{p_{f}} [/tex] the final momentum. Linear momentum is defined as [tex] \overrightarrow{p}=m\overrightarrow{v} [/tex], using that on (1):
[tex]\varDelta\overrightarrow{p}=m \overrightarrow{v_{f}}-m \overrightarrow{v_{i}} [/tex] (2)
It's important to note that momentum and velocity are vectors and direction matters, so if +x direction is the direction towards the wall and the -x direction away the wall [tex]\overrightarrow{v_{i}}=+2.2\, \frac{m}{s} [/tex] and [tex] \overrightarrow{v_{f}}=-2.2\, \frac{m}{s} [/tex] so (2) becomes:
[tex] \varDelta\overrightarrow{p}=m(-2.2- (+2.2))=-(4.5)(4.4) [/tex]
[tex] \varDelta\overrightarrow{p}=-19.8\, \frac{mkg}{s}[/tex]