Answer:
1. Reflection across the y-axis
2. Rotation over the origin by 90° in anticlockwise direction
Step-by-step explanation:
Triangle ABC has vertices A(-2,1), B(-5,-2) and C(-3,-4).
1) Reflect this triangle across the y-axis. This reflection has the rule:
[tex](x,y)\rightarrow (-x,y)[/tex]
Thus,
- [tex]A(-2,1)\rightarrow A'(2,1);[/tex]
- [tex]B(-5,-2)\rightarrow B'(5,-2);[/tex]
- [tex]C(-3,-4)\rightarrow C'(3,-4).[/tex]
2) Rotate triangle A'B'C' over the origin by 90° in anticlockwise direction. This rotation has the rule:
[tex](x,y)\rightarrow (-y,x)[/tex]
So,
- [tex]A'(2,1)\rightarrow A''(-1,2);[/tex]
- [tex]B'(5,-2)\rightarrow B''(2,5);[/tex]
- [tex]C'(3,-4)\rightarrow C''(4,3).[/tex]