Respuesta :
Answer:
(3, - 3 )
Step-by-step explanation:
Given a quadratic in standard form
f(x) = ax² + bx + c : a ≠ 0
Then the x- coordinate of the vertex is
[tex]x_{vertex}[/tex] = - [tex]\frac{b}{2a}[/tex]
f(x) = 3x² - 18x + 24 ← is in standard form
with a = 3, b = - 18
[tex]x_{vertex}[/tex] = - [tex]\frac{-18}{6}[/tex] = 3
Substitute x = 3 into the equation for corresponding value of y
f(3) = 3(3)² - 18(3) + 24 = 27 - 54 + 24 = - 3
vertex = (3, - 3 )
Answer:
Step-by-step explanation:
f(x) = 3x² - 18x + 24
f(x) = 3(x²-6x +8)
f(x) = 3 ((x² -6x+9) - 9) +8)
f(x) = 3 ( (x-3)²- 1 )
f(x) = 3(x-3)² - 3
note : the vertex of the graph of the function. f(x) = a(x-h)² + k is the point : (h;k)
in this exercice the vertex is : (3; -3 )