Respuesta :

Answer:

  • [tex]a_{1} =-6[/tex]
  • [tex]{\displaystyle a_{2}=-2}[/tex]
  • [tex]{\displaystyle a_{3}=4}[/tex]
  • [tex]{\displaystyle a_{4}=12}[/tex]

Step-by-step explanation:

As the given recursive formula

[tex]{\displaystyle a_{n}=a_{n-1}+2n}[/tex]

and

[tex]a_{1} =-6[/tex]

So, we have to determine the next three terms i.e. [tex]a_{2}, a_{3},a_{4}[/tex]

Determining the value of [tex]a_{2}[/tex]

As

[tex]{\displaystyle a_{n}=a_{n-1}+2n}[/tex]

Putting [tex]n = 2[/tex] to find [tex]a_{2}[/tex]

[tex]{\displaystyle a_{2}=a_{2-1}+2(2)}[/tex]

[tex]{\displaystyle a_{2}=a_{1}+4}[/tex]

[tex]{\displaystyle a_{2}=(-6)+4}[/tex]         ∵a₁=-6

[tex]{\displaystyle a_{2}=-2}[/tex]

Determining the value of [tex]a_{3}[/tex]

As

[tex]{\displaystyle a_{n}=a_{n-1}+2n}[/tex]

Putting [tex]n = 3[/tex] to find [tex]a_{3}[/tex]

[tex]{\displaystyle a_{3}=a_{3-1}+2(3)}[/tex]

[tex]{\displaystyle a_{3}=a_{2}+6}[/tex]

[tex]{\displaystyle a_{3}=(-2)+6}[/tex]         ∵a₂=-2

[tex]{\displaystyle a_{3}=4}[/tex]

Determining the value of [tex]a_{4}[/tex]

As

[tex]{\displaystyle a_{n}=a_{n-1}+2n}[/tex]

Putting [tex]n = 4[/tex] to find [tex]a_{4}[/tex]

[tex]{\displaystyle a_{4}=a_{4-1}+2(4)}[/tex]

[tex]{\displaystyle a_{4}=a_{3}+8}[/tex]

[tex]{\displaystyle a_{4}=(4)+8}[/tex]         ∵a₃=4

[tex]{\displaystyle a_{4}=12}[/tex]

So,

  • [tex]a_{1} =-6[/tex]
  • [tex]{\displaystyle a_{2}=-2}[/tex]
  • [tex]{\displaystyle a_{3}=4}[/tex]
  • [tex]{\displaystyle a_{4}=12}[/tex]

Keywords: sequence, recursive formula, terms

Learn more sequence and recursive formula from brainly.com/question/12638593

#learnwithBrainly