A line passes through the points (1, 4) and (3, –4). Which is the equation of the line?
y = negative 4 x + 8
y = –2x + 6
y = negative one-fourth x + 2
y = 2x + 2

Respuesta :

Answer:

The equation of line passing through points (1 , 4) and (3 , - 4) is                y = - 4 x + 8

Step-by-step explanation:

Given as :

A line is passing through points

[tex]x_1[/tex] , [tex]y_1[/tex] = 1 , 4

[tex]x_2[/tex] , [tex]y_2[/tex] = 3 , - 4

Now, Equation of line in point-slope form is

y -  [tex]y_1[/tex] = m × (x -  [tex]x_1[/tex])

where m is the slope of line

∵ m = [tex]\dfrac{y_2 - y_1}{x_2 - x_1}[/tex]

i.e m = [tex]\dfrac{ ( - 4 ) - 4}{3 - 1}[/tex]

Or, m = [tex]\dfrac{ - 8}{2}[/tex]

Or, m = - 4

So, The slope of line = m = - 4

∵, equation of line can be written as

y -  [tex]y_1[/tex] = m × (x -  [tex]x_1[/tex])

So, Putting the value of slope, m and points ( [tex]x_1[/tex] , [tex]y_1[/tex]  )

i.e  y - 4 = ( - 4 ) × ( x - 1 )

Or, y - 4 = ( - 4 ) × x + 4

Or, y - 4 = - 4 x + 4

Or, y = - 4 x + 4 + 4

∴    y = - 4 x + 8

So, The equation of line y = - 4 x + 8

Hence, The equation of line passing through points (1 , 4) and (3 , - 4) is       y = - 4 x + 8  Answer

Answer:

A

Step-by-step explanation: