Respuesta :

Answer:

The Value of x is 10.

Step-by-step explanation:

Consider ABCD is a Parallelogram where

∠BCA = 43°

∠CBA = 98°

∠ACD = (2x+9)

To Find:

x = ?

Solution:

Triangle sum property:

In a Triangle sum of the measures of all the angles of a triangle is 180°.

In ΔABC

[tex]\angle ABC+\angle BCA+\angle CAB=180\\\\98+43+\angle CAB=180\\\therefore m\angle CAB =180-141=39\°[/tex]

Now CD || BA         .......opposite sides of Parallelogram is parallel

[tex]\angle CAB=\angle ACD[/tex].........Alternate Angles are equal

Substituting the values we get

[tex]39=2x+19\\2x=20\\\\\therefore x=\dfrac{20}{2}=10\\\\\therefore x=10[/tex]

The Value of x is 10.