Answer:
[tex]4 {x}^{3} [/tex]
Step-by-step explanation:
We want to simplify
[tex]4x \times ( \frac{1}{x})^{ - 5} \times {x}^{ - 3} [/tex]
Recall the reciprocal property:
[tex] \frac{1}{a} = {a}^{ - 1} [/tex]
We apply this property to get:
[tex]4x \times ( {x}^{ - 1} )^{ - 5} \times {x}^{ - 3} [/tex]
Also apply this property of exponents to get:
[tex] {(a}^{m})^{n} = {a}^{mn} [/tex]
[tex]4x \times ( x )^{ 5} \times {x}^{ - 3} [/tex]
We simplify using the product property of exponents to get:
[tex]4 {x}^{1 + 5 - 3} = 4 {x}^{3} [/tex]