Respuesta :

Answer: [tex]y=2x^{2}-5x+7[/tex]

Step-by-step explanation:

The quadratic equation in its standard form is:

[tex]y=ax^{2}+bx+c[/tex]

Now, we are given 5 points of the parabola (if you graph a quadratic equation you will have a parabola), however we only need to choose three points to find the coeficients [tex]a[/tex], [tex]b[/tex] and [tex]c[/tex] in the quadratic equation.

So, let's choose the first three points:

(-1,14):

[tex]14=a(-1)^{2}+b(-1)+c[/tex]

[tex]14=a-b+c[/tex] (1)

(0,7):

[tex]7=a(0)^{2}+b(0)+c[/tex]

[tex]7=c[/tex] (2)

(1,4):

[tex]y=2x^{2}-5x+7[/tex]

[tex]4=a(1)^{2}+b(1)+c[/tex]

[tex]4=a+b+c[/tex] (3)

Substituting (2) in (1) and (3):

[tex]14=a-b+7[/tex] (4)

[tex]4=a+b+7[/tex] (5)

At this point we have a system with two equations.

Adding (4) to (5):

[tex]18=2a+14[/tex] (6)

Isolating [tex]a[/tex]:

[tex]a=2[/tex] (7)

Substituitng (7) in (3):

[tex]4=2+b+7[/tex] (8)

Isolating [tex]b[/tex]:

[tex]b=-5[/tex] (9)

Now we have the three coeficients and we can write the quadratic equation:

[tex]y=2x^{2}-5x+7[/tex]